If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40b^2=160
We move all terms to the left:
40b^2-(160)=0
a = 40; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·40·(-160)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*40}=\frac{-160}{80} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*40}=\frac{160}{80} =2 $
| 92-x+159=17 | | 8^0.6=x | | 4h-1=h+16 | | 3x+8-2x=9+2x-6 | | 5x-8x+53=2x+38 | | 7x+6x-2x=38+6 | | x(2x-4)=5-8x | | 17*29+46/x=404 | | 2x=287 | | 3(k-4)-2(k+2)-13=-22 | | 5x+2=5(4)+2= | | 8x-2=34-2 | | ((5x12)/3)+30-50=x | | ((5x12)/3=+30-50=x | | 4/X+5/y=58 | | x=2x(5x+2) | | x=3.14(0.75)2 | | 160x^2-20000/x^2=0 | | 15.7=293.14)r | | (7y+11)(9y+16)=0 | | 5a-5+14a+20=90 | | 10v-30=20v+9 | | 2x-(5x-2)=8+(2x-2) | | 5x-8=13x-104 | | (3x+36)(x-11)=(2x+34)(x-12) | | -4/5u+5/2=-6/5u-2 | | 8u+25=-12u-20 | | 2.5=-3+7x^-1+2x | | H^2+3h=88 | | 14w-35=-20w+15 | | 10y-7=18+5y | | 4x2+4x+2=0 |